
Technical Manual of the US-Common Layer

Organisation: Copyright (C) 2019-2024 Olivier Boudeville

Contact: about (dash) us-common (at) esperide (dot) com

Creation date: Saturday, May 2, 2020

Lastly updated: Sunday, January 14, 2024

Version: 0.1.5

Status: Stable

Dedication: Users and maintainers of the US-Common layer.

Abstract: The role of the US-Common layer (part of the Universal
Server project) is to provide base elements on which the various
Universal Services are built, notably:

• the Universal Server itself: see US-Main
• the Universal Webserver: see US-Web

We present here a short overview of these services, to introduce
them to newcomers.
The next level of information is either to browse the US-Common
API documentation or simply to read the corresponding source
files, which are intensely commented and generally straightfor-
ward.

The latest version of this documentation is to be found at the official US-
Common website (http://us-common.esperide.org).

The documentation is also mirrored here.

1

http://us-common.esperide.org/
https://github.com/Olivier-Boudeville/Universal-Server
https://github.com/Olivier-Boudeville/Universal-Server
http://us-main.esperide.org/
http://us-web.esperide.org/
api-doc/index.html
api-doc/index.html
https://github.com/Olivier-Boudeville/us-common/tree/master/src
https://github.com/Olivier-Boudeville/us-common/tree/master/src
http://us-common.esperide.org
http://us-common.esperide.org
https://olivier-boudeville.github.io/us-common/

Table of Contents
Overview 3

Layer Stack 3

Facilities Provided by this Layer 4

Configuration 4
Server Configuration . 4
Client Configuration . 5

Licence 5

Current Stable Version & Download 5
Using Cutting-Edge GIT . 5
Using OTP-Related Build/Runtime Conventions 6

Support 6

Please React! 6

Ending Word 6

2

Overview
The US-Common layer is the basis (lowest-level) of the Universal Server project.

Its purpose is to provide base elements on which the various Universal Ser-
vices are built, notably:

• the Universal Server itself: see US-Main

• the Universal Webserver: see US-Web

We present here a short overview of these services, to introduce them to
newcomers.

The next level of information is to read the corresponding source files, which
are intensely commented and generally straightforward.

The project repository is located here.

Layer Stack
From the highest level to the lowest, as shown here, usually a software stack
involving US-Common is structured that way:

• an applicative layer such as US-Main or US-Web, etc.

• US-Common (this layer)

• Ceylan-Traces (for advanced runtime traces)

• Ceylan-WOOPER (for OOP)

• Ceylan-Myriad (as an Erlang toolbox)

• Erlang (for the compiler and runtime)

• GNU/Linux

The shorthand for US-Common is uc.

3

http://us-common.esperide.org/
https://github.com/Olivier-Boudeville/Universal-Server
http://us.esperide.org/
http://us-web.esperide.org/
https://github.com/Olivier-Boudeville/us-common/tree/master/src
https://github.com/Olivier-Boudeville/us-common
https://github.com/Olivier-Boudeville/Universal-Server
http://us-main.esperide.org/
http://us-web.esperide.org/
http://us-common.esperide.org/
http://traces.esperide.org
http://wooper.esperide.org
http://myriad.esperide.org
http://erlang.org
https://en.wikipedia.org/wiki/Linux

Facilities Provided by this Layer
These are mainly common services centralised here so that the various US ap-
plications can make use of them:

• USServer: a general abstraction of a server, so that all US ones inherit
the corresponding base features (e.g. name registration, uptime informa-
tion, applicative ping, state description, etc.)

• USConfigServer: a server (usually a singleton) in charge of managing
all US-level configuration information on behalf of the other US
servers; this comprises the look-up, parsing and checking of the relevant
configuration files, the setting of the corresponding information then made
available to the rest of the US framework (EPMD port, TCP port range,
cookie, execution context, application and log directories, name and scope
of registrations, user/group information, etc.)

• USScheduler: a server whose purpose is to schedule any kind of asyn-
chronous, independent tasks (think: "crontab on steroids"); it allows
planning task commands to be issued to actuators one time, multiple ones,
or indefinitely, based on user-level periods with various policies, on a best-
effort basis yet reliably (proper time and timer management), trying to
find a balance between the respect of the requested periodicities and the
correction of any delay incurred (see also a corresponding test of it)

• USTaskRing: a facility useful to schedule a set of periodic tasks syn-
chronously (no overlapping between them) and uniformly (as evenly
as possible over time); typically useful to pace regularly a set of actions of
indefinite number that are ruled by a common periodicity and/or to share
a resource unable to cope with concurrent accesses (e.g. a non-reentrant
third-party log analysis tool that maintains its own opaque state on filesys-
tem, yet have to operate on a set of virtual hosts)

Configuration

Server Configuration
The configuration of the Universal Server infrastructure lies primarily in a dedi-
cated us.config file, which is searched from various base directories, according
to the following order:

1. in any base directory designated by the standard XDG_CONFIG_HOME envi-
ronment variable, otherwise in default ~/.config

2. in any of the base directories listed (separator being :) in the standard
XDG_CONFIG_DIRS environment variable, otherwise in default /etc/xdg

Each of these base directories is searched in turn for a universal-server
subdirectory that would contain a us.config file, and the first found one is cho-
sen as the US Configuration directory. Any other US-related configuration
file is then expected to be found in the same directory.

4

https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USServer.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USConfigServer.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USScheduler.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/test/class_USScheduler_test.erl
https://github.com/Olivier-Boudeville/us-common/blob/master/src/class_USTaskRing.erl

In practice, often the ~/.config/universal-server/us.config location is
preferred.

All US configuration files are in the ETF format (for Erlang Term Format).
One may refer to this example us.config to learn their structure and derive

one’s own us.config.

Client Configuration
Each US service (e.g. US-Main, US-Web, etc.) can be monitored (locally or
remotely) thanks to a corresponding priv/bin/monitor-us-*.sh script, which
must be given the necessary information (hostname, cookie, TCP port range,
etc.) in order to contact the target US instance.

This information is typically stored in a us-*-remote-access.config ETF
file, located as well in the aforementioned US configuration directory.

Licence
US-Common is licensed by its author (Olivier Boudeville) under the GNU Affero
General Public License as published by the Free Software Foundation, either
version 3 of this license, or (at your option) any later version.

This allows the use of the US-Common code in a wide a variety of software
projects, while still maintaining copyleft on this code, ensuring improvements
are shared.

We hope indeed that enhancements will be back-contributed (e.g. thanks to
merge requests), so that everyone will be able to benefit from them.

Current Stable Version & Download
In general, we prefer using GNU/Linux, sticking to the latest stable release of
Erlang, and building it from sources, thanks to GNU make.

As mentioned, the single, direct prerequisite of US-Common is Ceylan-
Traces, which implies in turn Ceylan-WOOPER, then Ceylan-Myriad and Er-
lang.

Refer to the corresponding Myriad prerequisite section for more precise
guidelines, knowing that US-Common does not need modules with conditional
support such as crypto or wx.

Most uses of US-Common will require authbind (e.g. on Arch Linux, ob-
tained from the AUR, typically with thanks to the AUR installer that Ceylan-
Hull recommends and installs).

Using Cutting-Edge GIT
This is the installation method that we use and recommend; the US-Common
master branch is meant to stick to the latest stable version: we try to ensure
that this main line always stays functional (sorry for the pun). Evolutions are
to take place in feature branches and to be merged only when ready.

Once Erlang is available, it should be just a matter of executing:

5

http://myriad.esperide.org/#etf
https://github.com/Olivier-Boudeville/us-common/blob/master/priv/for-testing/us.config
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/Olivier-Boudeville/US-Common
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-Traces
https://github.com/Olivier-Boudeville/Ceylan-WOOPER
https://github.com/Olivier-Boudeville/Ceylan-Myriad
http://erlang.org
http://erlang.org
http://myriad.esperide.org#prerequisites
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/update-aur-installer.sh
https://github.com/Olivier-Boudeville/Ceylan-Hull/blob/master/update-aur-installer.sh

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-WOOPER wooper
$ cd wooper && make all && cd ..

$ git clone https://github.com/Olivier-Boudeville/Ceylan-Traces traces
$ cd traces && make all && cd ..

Note the dash becoming an underscore, for OTP compliance:
$ git clone https://github.com/Olivier-Boudeville/us-common us_common
$ cd us_common && make all

Running a corresponding test just then boils down to:

$ cd test && make class_USScheduler_run CMD_LINE_OPT="--batch"

Should LogMX be installed and available in the PATH, the test may simply
become:

$ make class_USScheduler_run

Using OTP-Related Build/Runtime Conventions
As discussed in these sections of Myriad, WOOPER and Traces, we added the
(optional) possibility of generating a US-Common OTP application out of the
build tree, ready to be integrated into an (OTP) release. For that we rely on
rebar3, relx and hex.

Unlike Myriad (which is an OTP library application), US-Common is (like
WOOPER and Traces) an OTP active application, meaning the reliance on
an application that can be started/stopped (us_common_app), a root supervisor
(us_common_sup) and, here, two proper supervisor bridges (us_common_scheduler_bridge_sup
and us_common_config_bridge_sup).

Support
Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
reported to the project interface (typically issues) or directly at the email address
mentioned at the beginning of this document.

Please React!
If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word
Have fun with US-Common!

6

http://myriad.esperide.org/myriad.html#otp
http://wooper.esperide.org/index.html#otp
http://traces.esperide.org/index.html#otp
https://www.rebar3.org/
https://github.com/erlware/relx
https://hex.pm/
https://github.com/Olivier-Boudeville/us-common
https://github.com/Olivier-Boudeville/us-common/issues

7

	Table of Contents
	Overview
	Layer Stack
	Facilities Provided by this Layer
	Configuration
	Server Configuration
	Client Configuration

	Licence
	Current Stable Version & Download
	Using Cutting-Edge GIT
	Using OTP-Related Build/Runtime Conventions

	Support
	Please React!
	Ending Word

